Skip to main content

ENCLOSURE TYPE FOR ELECTRIC MOTOR SPECIFICATIONS

ENCLOSURE TYPE FOR ELECTRIC MOTOR SPECIFICATIONS
How do they specify the enclosure of an Electric Motor?

The enclosure of the motor must protect the windings, bearings, and other mechanical parts from moisture, chemicals, mechanical damage and abrasion from grit. NEMA standards MG1-1.25 through 1.27 define more than 20 types of enclosures under the categories of open machines, totally enclosed machines, and machines with encapsulated or sealed windings. The most commonly used motor enclosures are open dripproof, totally enclosed fan cooled and explosionproof.


motor enclosure

The Standards for IP Codes apply to the classification of degrees of protection provided by enclosure for all rotating machines. The designation used for the degree of protection consists of the letter IP (International Protection) followed by two characteristic numerals.

motor designation
When the degree of protection is specified by only one numeral, the omitted numeral is replaced by the letter X. For example, IPX5 or IP2X.

The first Characteristic Numeral indicates the degree of protection provided by the enclosure with respect to persons and also to the parts of the machine inside the enclosure.

The Second Characteristic Numeral indicates the degree of protection provided by the enclosure with respect to harmful effect due to ingress of water.

The two characteristic numerals signify conformity with the conditions indicated in Table 1.3.A. – Degrees of Protection Indicated by the Two Characteristic Numerals.


motor protection
motor protection 2

VARIOUS MOTOR ENCLOSURES IMAGES
motor enclosures
Open Dripproof.
The open dripproof motor (ODP) has a free exchange of air with the ambient. Drops of liquid or solid particles do not interfere with the operation at any angle from 0 to 15degrees downward from the vertical. The openings are intake and exhaust ports to accommodate interchange of air. The open dripproof motor is designed for indoor use where the air is fairly clean and where there is little danger of splashing liquid.

Totally Enclosed Fan Cooled (TEFC).
This type of enclosure prevents the free exchange of air between the inside and outside of the frame, but does not make the frame completely airtight. A fan is attached to the shaft and pushes air over the frame during its operation to help in the cooling process. The ribbed frame is designed to increase the surface area for cooling purposes. There is also a totally enclosed non-ventilated (TENV) design which does not use a fan, but is used in situations where air is being blown over the motor shell for cooling, such as in a propeller fan application.

Explosionproof
The explosionproof motor is a totally enclosed machine and is designed to withstand an explosion of specified gas or vapor inside the motor casing and prevent the ignition outside the motor by sparks, flashing or explosion. These motors are designed for specific hazardous purposes, such as atmospheres containing gases or hazardous dusts. For safe operation, the maximum motor operating temperature must be below the
ignition temperature of surrounding gases or vapors. Explosionproof motors are designed, manufactured and tested under the rigid requirements of the Underwriters Laboratories. Hazardous location motor applications are classified by the type of hazardous environment present, the characteristics of the specific material creating the hazard, the probability of exposure to the environment, and the maximum temperature level that is considered safe for the substance creating the hazard. The format used to define this information is a class, group, division and temperature code structure.

source: 2010 IIEE Technical Manual

Comments

  1. IT IS MUCH HELPFUL ARTICLE AND IMPROVE KNOWLEDGE TO SHARE WITH SOME STUDENTS , MANY THANKS TO THOSE WHO CONCERN

    ReplyDelete

Post a Comment

Popular posts from this blog

PARTS OF A POWER TRANSFORMER

What are the name of the basic parts of a Power Transformer? We can not deny the fact that only a handful of electrical engineering students are presently familiar with power transformers especially on what it looks like. Unlike a transformer we found in our homes, a power transformer’s appearance and construction is somewhat more complicated. It is not just a simple winding with a primary and secondary terminal although basically any transformer has one. The function that a power transformer plays in an electrical system is very important that an electric utility can not afford to loss it during its operation. Our discussion here will focus more on the basic parts and functions of a power transformer that are usually tangible whenever you go to a substation . Although not all power transformers are identical, nonetheless they all have the following listed parts in which the way of construction may differ.

ELECTRIC MOTOR FRAME SIZE STANDARD SPECIFICATIONS

ELECTRIC MOTOR FRAME SIZE STANDARD SPECIFICATIONS How is electric motor frame size being specified? Motor frame dimensions have been standardized with a uniform frame size numbering system. This system was developed by NEMA and specific frame sizes have been assigned to standard motor ratings based on enclosure, horsepower and speed. The current standardized frames for integral horsepower induction motors ranges from 143T to 445T. These standards cover most motors in the range of one through two hundred horsepower. Typical example of where you can locate the frame is shown in Fig 1.2.D – Frame No. The numbers used to designate frame sizes have specific meanings based on the physical size of the motor. Some digits are related to the motor shaft height and the remaining digit or digits relate to the length of the motor. The rerate, or frame size reduction programs were brought about by advancements in motor technology relating mainly to higher temperature ratings of insulating mate...

ELECTRIC MOTOR NAMEPLATE SPECIFICATIONS

How do we interpret an electric motor nameplate? Motor standards are established on a country by country basis.Fortunately though, the standards can be grouped into two major categories: NEMA and IEC (and its derivatives). In North America, the National Electric Manufacturers Association (NEMA) sets motor standards, including what should go on the nameplate (NEMA Standard MG 1-10.40 "Nameplate Marking for Medium Single-Phase and Polyphase Induction Motors").