Skip to main content

TRANSFORMER PART 2


Schematic of an Ideal Transformer

Beside the conductors in the network, the second most contributors to the power loss in the Power System are the transformers. Two known types of losses that go with this device are the copper or also known as the winding loss and the core loss. While the core loss can still broken down into two components namely, the eddy current loss and the hysteresis loss. We all know from our academics that an ideal transformer must have an incoming power equals the outgoing. In reality however, the electrical nature of the transformers components still prevails. Since its winding and the core is all made up of earthly materials, they are also subjected to resistance and reactance. A small amount of power is still dissipated in these materials during operation and this is what we generally consider as the transformer loss.

Like any other device, transformers are also categorized to many types. Different types of connection and construction makes them unique in their one way not only to their function but also to their operational output. The beauty of this is one can be creative enough to come up with a certain application to a certain situation using any of all of these available types.
In a three-phase network, different connections are used in dealing with three-phase transformers; some are connected delta-wye, delta-delta, wye float-wye float, etc. Of course each is with their own advantage and disadvantage. Whether these connections affects our system’s loss analysis or not, this is of course is what we are going to explore in the later part of this study.


CONTINUE WITH TRANSFORMER TOPIC

Comments

Popular posts from this blog

PARTS OF A POWER TRANSFORMER

What are the name of the basic parts of a Power Transformer? We can not deny the fact that only a handful of electrical engineering students are presently familiar with power transformers especially on what it looks like. Unlike a transformer we found in our homes, a power transformer’s appearance and construction is somewhat more complicated. It is not just a simple winding with a primary and secondary terminal although basically any transformer has one. The function that a power transformer plays in an electrical system is very important that an electric utility can not afford to loss it during its operation. Our discussion here will focus more on the basic parts and functions of a power transformer that are usually tangible whenever you go to a substation . Although not all power transformers are identical, nonetheless they all have the following listed parts in which the way of construction may differ.

ELECTRIC MOTOR FRAME SIZE STANDARD SPECIFICATIONS

ELECTRIC MOTOR FRAME SIZE STANDARD SPECIFICATIONS How is electric motor frame size being specified? Motor frame dimensions have been standardized with a uniform frame size numbering system. This system was developed by NEMA and specific frame sizes have been assigned to standard motor ratings based on enclosure, horsepower and speed. The current standardized frames for integral horsepower induction motors ranges from 143T to 445T. These standards cover most motors in the range of one through two hundred horsepower. Typical example of where you can locate the frame is shown in Fig 1.2.D – Frame No. The numbers used to designate frame sizes have specific meanings based on the physical size of the motor. Some digits are related to the motor shaft height and the remaining digit or digits relate to the length of the motor. The rerate, or frame size reduction programs were brought about by advancements in motor technology relating mainly to higher temperature ratings of insulating mate

ELECTRIC MOTOR NAMEPLATE SPECIFICATIONS

How do we interpret an electric motor nameplate? Motor standards are established on a country by country basis.Fortunately though, the standards can be grouped into two major categories: NEMA and IEC (and its derivatives). In North America, the National Electric Manufacturers Association (NEMA) sets motor standards, including what should go on the nameplate (NEMA Standard MG 1-10.40 "Nameplate Marking for Medium Single-Phase and Polyphase Induction Motors").