Skip to main content

HARDWARE COMPONENTS OF TRANSMISSION LINE

Since the beginning of time where overhead transmission lines were first made, significant evolution occurred with respect to its construction and standards. Several technical innovations were realized as time goes by, not only to the way it was constructed but most especially to the materials that were used. Many of these components possesses its own respective electrical characteristics like the conductors and the connectors used.

Image courtesy of http://www.nationalgrid.com/uk/LandandDevelopment/DDC/devnearohl_final/appendix2/

Understanding losses in the transmission lines not only means directly solving for the said value but most of the time it is by considering the materials and equipments involved in the construction which by virtue of many is the most prevalent way of analysis anyone should make.


The following are the most common overhead transmission line components:
  • Structures for Support (Poles & Towers)
  • Wires and Cables (phase conductors & OHGW)
  • Insulators (ceramics & polymer)
  • Connectors 
  • Guying for support
  • Line Arresters
  • Others (vibration damper, corona ring, spacers, etc.)
The effectiveness of any overhead transmission line is only as strong as the weakest among the components stated above. Each of these is vital to the efficiency of the operation, and a failure of any of them no matter how small it is may result to failure of the whole system.

Comments

  1. The electrical transmission lines product range includes Double Break AB Switches, Single Break AB Switches, 11 KV Dolo Cutouts, Double Break Tilting Type AB Switches, Dolo Cutouts CH Type etc.

    ReplyDelete

Post a Comment

Popular posts from this blog

PARTS OF A POWER TRANSFORMER

What are the name of the basic parts of a Power Transformer? We can not deny the fact that only a handful of electrical engineering students are presently familiar with power transformers especially on what it looks like. Unlike a transformer we found in our homes, a power transformer’s appearance and construction is somewhat more complicated. It is not just a simple winding with a primary and secondary terminal although basically any transformer has one. The function that a power transformer plays in an electrical system is very important that an electric utility can not afford to loss it during its operation. Our discussion here will focus more on the basic parts and functions of a power transformer that are usually tangible whenever you go to a substation . Although not all power transformers are identical, nonetheless they all have the following listed parts in which the way of construction may differ.

ELECTRIC MOTOR FRAME SIZE STANDARD SPECIFICATIONS

ELECTRIC MOTOR FRAME SIZE STANDARD SPECIFICATIONS How is electric motor frame size being specified? Motor frame dimensions have been standardized with a uniform frame size numbering system. This system was developed by NEMA and specific frame sizes have been assigned to standard motor ratings based on enclosure, horsepower and speed. The current standardized frames for integral horsepower induction motors ranges from 143T to 445T. These standards cover most motors in the range of one through two hundred horsepower. Typical example of where you can locate the frame is shown in Fig 1.2.D – Frame No. The numbers used to designate frame sizes have specific meanings based on the physical size of the motor. Some digits are related to the motor shaft height and the remaining digit or digits relate to the length of the motor. The rerate, or frame size reduction programs were brought about by advancements in motor technology relating mainly to higher temperature ratings of insulating mate

ELECTRIC MOTOR NAMEPLATE SPECIFICATIONS

How do we interpret an electric motor nameplate? Motor standards are established on a country by country basis.Fortunately though, the standards can be grouped into two major categories: NEMA and IEC (and its derivatives). In North America, the National Electric Manufacturers Association (NEMA) sets motor standards, including what should go on the nameplate (NEMA Standard MG 1-10.40 "Nameplate Marking for Medium Single-Phase and Polyphase Induction Motors").