Skip to main content

UNDERGROUND DISTRIBUTION LINES USING POWER CABLE IN AN ELECTRIC DISTRIBUTION SYSTEM

UNDERGROUND DISTRIBUTION LINES USING POWER CABLE IN AN ELECTRIC DISTRIBUTION SYSTEM
How are power cables being used in an electrical distribution system?

Underground distribution lines have been a long known technology used by many electric utilities in delivering power to its customers. This set up can usually be found in highly urbanized areas where space for overhead lines can be scarce. Various pros and cons are known to be associated in using underground distribution lines in a power distribution system.

Like any other construction which involves public or private area, distribution system using underground lines installation must at all times coordinate with the installation master plan of the city or with any private properties to avoid conflict with construction of future facilities.

For easy access for inspection and maintenance, underground lines are normally installed adjacent to roadways in urban, housing, or industrial plant areas, but may be routed as required to meet the project objectives.

A careful study will be made of all underground utilities in order to ensure a minimum of interference between electrical lines and other underground utilities, whether existing, being constructed, or proposed as a definite future construction project. Electrical lines will be at least six feet from any steam or hot water lines, except at crossings where a one-foot separation from such lines is adequate.

In designing underground distribution system, electric utilities must follow or comply necessary requirements to insure the installations are within standard. Symbols and codes must be in accordance with the standards to avoid misinterpretations caused by different symbols used.

Underground cable systems may employ manholes or above-ground sectionalizing and pulling cabinets depending on local geological conditions, potential for damage from vehicles and the required design life of the facility.

All secondary underground cables may be installed in either concrete encased ducts or direct burial type ducts or conduit, or they may be direct burial type cables. Direct burial plastic conduit may be utilized when cable temperature conditions are within the conduit rating and where the conduit is not under large paved areas or building structures. Conductors shall be copper, although aluminum may be used in lieu of copper conductors No. 4 AWG and larger.

When it comes to cable installation, all primary underground cables shall be installed in concrete encased non-metallic ducts or concrete encased galvanized rigid steel conduits except as follows. Steel conduit, which is not concrete encased, shall be corrosion proof-coated (PVC, etc.) and shall be employed only for short runs between buildings or under paved areas. Direct buried ducts or direct buried cables may be employed for primary distribution (above 600 V) feeders located in areas which are remote to normal pedestrian and vehicle traffic.

 Consider using a direct buried, flexible polyethylene cable, duct type conduit with self contained cable to allow easier replacement. Concrete markers shall be provided at approximately 200 foot intervals and at each change in direction to indicate the location of underground cable route. Direct buried cable or cable duct, which is not concrete and metallic conduit encased, should be marked with a metallic/magnetic warning tape buried six to twelve inches below the surface and above the cable or duct. Cable warning tape shall be red or orange in color.

Comments

Post a Comment

Popular posts from this blog

PARTS OF A POWER TRANSFORMER

What are the name of the basic parts of a Power Transformer? We can not deny the fact that only a handful of electrical engineering students are presently familiar with power transformers especially on what it looks like. Unlike a transformer we found in our homes, a power transformer’s appearance and construction is somewhat more complicated. It is not just a simple winding with a primary and secondary terminal although basically any transformer has one. The function that a power transformer plays in an electrical system is very important that an electric utility can not afford to loss it during its operation. Our discussion here will focus more on the basic parts and functions of a power transformer that are usually tangible whenever you go to a substation . Although not all power transformers are identical, nonetheless they all have the following listed parts in which the way of construction may differ.

ELECTRIC MOTOR FRAME SIZE STANDARD SPECIFICATIONS

ELECTRIC MOTOR FRAME SIZE STANDARD SPECIFICATIONS How is electric motor frame size being specified? Motor frame dimensions have been standardized with a uniform frame size numbering system. This system was developed by NEMA and specific frame sizes have been assigned to standard motor ratings based on enclosure, horsepower and speed. The current standardized frames for integral horsepower induction motors ranges from 143T to 445T. These standards cover most motors in the range of one through two hundred horsepower. Typical example of where you can locate the frame is shown in Fig 1.2.D – Frame No. The numbers used to designate frame sizes have specific meanings based on the physical size of the motor. Some digits are related to the motor shaft height and the remaining digit or digits relate to the length of the motor. The rerate, or frame size reduction programs were brought about by advancements in motor technology relating mainly to higher temperature ratings of insulating mate

ELECTRIC MOTOR NAMEPLATE SPECIFICATIONS

How do we interpret an electric motor nameplate? Motor standards are established on a country by country basis.Fortunately though, the standards can be grouped into two major categories: NEMA and IEC (and its derivatives). In North America, the National Electric Manufacturers Association (NEMA) sets motor standards, including what should go on the nameplate (NEMA Standard MG 1-10.40 "Nameplate Marking for Medium Single-Phase and Polyphase Induction Motors").