Skip to main content

SCADA ARCHITECTURES: MONOLITHIC SYSTEM

SCADA ARCHITECTURES: MONOLITHIC SYSTEM
What is a SCADA first generation system known as Monolithic system use for?

SCADA systems have evolved in parallel with the growth and sophistication of modern computing technology. The following sections will provide a description of the following three generations of SCADA systems:


Monolithic SCADA Systems

When SCADA systems were first developed, the concept of computing in general centered on “mainframe” systems. Networks were generally non-existent, and each centralized system stood alone. As a result, SCADA systems were standalone systems with virtually no connectivity to other systems.

The Wide Area Networks (WANs) that were implemented to communicate with remote terminal units (RTUs) were designed with a single purpose in mind–that of communicating with RTUs in the field and nothing else. In addition, WAN protocols in use today were largely unknown at the time.

The communication protocols in use on SCADA networks were developed by vendors of RTU equipment and were often proprietary. In addition, these protocols were generally very “lean”, supporting virtually no functionality beyond that required scanning and controlling points within the remote device. Also, it was generally not feasible to intermingle other types of data traffic with RTU communications on the network.

Connectivity to the SCADA master station itself was very limited by the system vendor. Connections to the master typically were done at the bus level via a proprietary adapter or controller plugged into the Central Processing Unit (CPU) backplane.

Redundancy in these first generation systems was accomplished by the use of two identically equipped mainframe systems, a primary and a backup, connected at the bus level. The standby system’s primary function was to monitor the primary and take over in the event of a detected failure. This type of standby operation meant that little or no processing was done on the standby system. Figure 3.1 shows a typical first generation SCADA architecture.

first generation scada

source: National Communication System, Technical Information Bulletin 04-1

Comments

Post a Comment

Popular posts from this blog

PARTS OF A POWER TRANSFORMER

What are the name of the basic parts of a Power Transformer? We can not deny the fact that only a handful of electrical engineering students are presently familiar with power transformers especially on what it looks like. Unlike a transformer we found in our homes, a power transformer’s appearance and construction is somewhat more complicated. It is not just a simple winding with a primary and secondary terminal although basically any transformer has one. The function that a power transformer plays in an electrical system is very important that an electric utility can not afford to loss it during its operation. Our discussion here will focus more on the basic parts and functions of a power transformer that are usually tangible whenever you go to a substation . Although not all power transformers are identical, nonetheless they all have the following listed parts in which the way of construction may differ.

ELECTRIC MOTOR FRAME SIZE STANDARD SPECIFICATIONS

ELECTRIC MOTOR FRAME SIZE STANDARD SPECIFICATIONS How is electric motor frame size being specified? Motor frame dimensions have been standardized with a uniform frame size numbering system. This system was developed by NEMA and specific frame sizes have been assigned to standard motor ratings based on enclosure, horsepower and speed. The current standardized frames for integral horsepower induction motors ranges from 143T to 445T. These standards cover most motors in the range of one through two hundred horsepower. Typical example of where you can locate the frame is shown in Fig 1.2.D – Frame No. The numbers used to designate frame sizes have specific meanings based on the physical size of the motor. Some digits are related to the motor shaft height and the remaining digit or digits relate to the length of the motor. The rerate, or frame size reduction programs were brought about by advancements in motor technology relating mainly to higher temperature ratings of insulating mate...

ELECTRIC MOTOR NAMEPLATE SPECIFICATIONS

How do we interpret an electric motor nameplate? Motor standards are established on a country by country basis.Fortunately though, the standards can be grouped into two major categories: NEMA and IEC (and its derivatives). In North America, the National Electric Manufacturers Association (NEMA) sets motor standards, including what should go on the nameplate (NEMA Standard MG 1-10.40 "Nameplate Marking for Medium Single-Phase and Polyphase Induction Motors").