Skip to main content

SCADA SYSTEM PROTOCOLS

SCADA SYSTEM PROTOCOLS
What are the different protocols in using the SCADA system?

In a SCADA system, the RTU accepts commands to operate control points, sets analog output levels, and responds to requests. It provides status, analog and accumulated data to the SCADA master station. The data representations sent are not identified in any fashion other than by unique addressing.

The addressing is designed to correlate with the SCADA master station database. The RTU has no knowledge of which unique parameters it is monitoring in the real world. It simply monitors certain points and stores the information in a local addressing scheme.

The SCADA master station is the part of the system that should “know” that the first status point of RTU number 27 is the status of a certain circuit breaker of a given substation. This represents the predominant SCADA systems and protocols in use in the utility industry today.

Each protocol consists of two message sets or pairs. One set forms the master protocol, containing the valid statements for master station initiation or response, and the other set is the RTU protocol, containing the valid statements an RTU can initiate and respond to. In most but not all cases, these pairs can be considered a poll or request for information or action and a confirming response.

The SCADA protocol between master and RTU forms a viable model for RTU-to- Intelligent Electronic Device (IED) communications. Currently, in industry, there are several different protocols in use. The most popular are International Electrotechnical Commission (IEC) 60870-5 series, specifically IEC 60870-5-101 (commonly referred to as 101) and Distributed Network Protocol version 3 (DNP3).

IEC 60870-5-101
IEC 60870-5 specifies a number of frame formats and services that may be provided at different layers. IEC 60870-5 is based on a three-layer Enhanced Performance Architecture (EPA) reference model for efficient implementation within RTUs, meters, relays, and other Intelligent Electronic Devices (IEDs).  Additionally, IEC 60870-5 defines basic application functionality for a user layer, which is situated between the Open System Interconnection (OSI) application layer and the application program. This user layer adds interoperability for such functions as clock synchronization and file transfers.

DNP3
Protocols define the rules by which devices talk with each other, and DNP3 is a protocol for transmission of data from point A to point B using serial communications. It has been used primarily by utilities like the electric companies, but it operates suitably in other areas.

The DNP3 is specifically developed for inter-device communication involving SCADA RTUs, and provides for both RTU-to-IED and master-to-RTU/IED. It is based on the three-layer enhanced performance architecture (EPA) model contained in the IEC 60870- 5 standards, with some alterations to meet additional requirements of a variety of users in the electric utility industry.

source: National Communication System, Technical Information Bulletin 04-1

Comments

Popular posts from this blog

PARTS OF A POWER TRANSFORMER

What are the name of the basic parts of a Power Transformer? We can not deny the fact that only a handful of electrical engineering students are presently familiar with power transformers especially on what it looks like. Unlike a transformer we found in our homes, a power transformer’s appearance and construction is somewhat more complicated. It is not just a simple winding with a primary and secondary terminal although basically any transformer has one. The function that a power transformer plays in an electrical system is very important that an electric utility can not afford to loss it during its operation. Our discussion here will focus more on the basic parts and functions of a power transformer that are usually tangible whenever you go to a substation . Although not all power transformers are identical, nonetheless they all have the following listed parts in which the way of construction may differ.

ELECTRIC MOTOR FRAME SIZE STANDARD SPECIFICATIONS

ELECTRIC MOTOR FRAME SIZE STANDARD SPECIFICATIONS How is electric motor frame size being specified? Motor frame dimensions have been standardized with a uniform frame size numbering system. This system was developed by NEMA and specific frame sizes have been assigned to standard motor ratings based on enclosure, horsepower and speed. The current standardized frames for integral horsepower induction motors ranges from 143T to 445T. These standards cover most motors in the range of one through two hundred horsepower. Typical example of where you can locate the frame is shown in Fig 1.2.D – Frame No. The numbers used to designate frame sizes have specific meanings based on the physical size of the motor. Some digits are related to the motor shaft height and the remaining digit or digits relate to the length of the motor. The rerate, or frame size reduction programs were brought about by advancements in motor technology relating mainly to higher temperature ratings of insulating mate...

ELECTRIC MOTOR NAMEPLATE SPECIFICATIONS

How do we interpret an electric motor nameplate? Motor standards are established on a country by country basis.Fortunately though, the standards can be grouped into two major categories: NEMA and IEC (and its derivatives). In North America, the National Electric Manufacturers Association (NEMA) sets motor standards, including what should go on the nameplate (NEMA Standard MG 1-10.40 "Nameplate Marking for Medium Single-Phase and Polyphase Induction Motors").