Skip to main content

TYPES OF IMPEDANCE FAULT IN DISTRIBUTION SYSTEM

TYPES OF IMPEDANCE FAULT IN DISTRIBUTION SYSTEM
Low Impedance and High Impedance fault in the distribution system

Low Impedance Faults
Low impedance faults or bolted faults can be either very high in current magnitude (10,000 amperes or above) or fairly low, e.g., 300 amperes at the end of a long feeder. Faults able to be detected by normal protective devices are all low impedance faults. These faults are such that the calculated value of fault current assuming a "bolted fault” and the actual are very similar. Most detectable faults, per study data, do indeed show that fault impedance is close to 0 ohms. This implies that the phase conductor either contacts the neutral wire or that the arc to the neutral conductor has a very low impedance. An EPRI study performed by the author over 10 years ago indicated that the maximum fault impedance for a detectable fault was 2 ohms or less. Figure 2, shown below, indicates that 2 ohms of fault impedance influences the level of fault current depending on location of the fault. As can be seen, 2 ohms of fault impedance considerably decreases the level of fault current for close in faults but has little effect for faults some distance away. What can be concluded is that fault impedance does not significantly affect faulted circuit indicator performance since low level faults are not greatly altered.


fault level

High Impedance Faults
High impedance faults are faults that are low in value, i.e., generally less than 100 amperes due to the impedance between the phase conductor and the surface on which the conductor falls. Figure 3, shown below, illustrates that most surface areas whether wet or dry do not conduct well. If one considers the fact that an 8 foot ground rod sunk into the earth more often than not results in an impedance of 100 ohms or greater, then it is not hard to visualize the fact that a conductor simply lying on a surface cannot be expected to have a low impedance. These faults, called high impedance faults, do not contact the neutral and do not arc to the neutral. They are not detectable by any conventional means and are not to be considered at all in the evaluation of FCIs and most other protective devices.

surface fault level

source: ABB Inc.HARD TO FIND INFORMATIONABOUT DISTRIBUTION SYSTEMS

Comments

  1. Great Blog,Thanks for sharing such beautiful information with us. I hope to will share some more information about Arc flash protection levels. Please visit our website Arc flash protection levels

    ReplyDelete

Post a Comment

Popular posts from this blog

PARTS OF A POWER TRANSFORMER

What are the name of the basic parts of a Power Transformer? We can not deny the fact that only a handful of electrical engineering students are presently familiar with power transformers especially on what it looks like. Unlike a transformer we found in our homes, a power transformer’s appearance and construction is somewhat more complicated. It is not just a simple winding with a primary and secondary terminal although basically any transformer has one. The function that a power transformer plays in an electrical system is very important that an electric utility can not afford to loss it during its operation. Our discussion here will focus more on the basic parts and functions of a power transformer that are usually tangible whenever you go to a substation . Although not all power transformers are identical, nonetheless they all have the following listed parts in which the way of construction may differ.

ELECTRIC MOTOR FRAME SIZE STANDARD SPECIFICATIONS

ELECTRIC MOTOR FRAME SIZE STANDARD SPECIFICATIONS How is electric motor frame size being specified? Motor frame dimensions have been standardized with a uniform frame size numbering system. This system was developed by NEMA and specific frame sizes have been assigned to standard motor ratings based on enclosure, horsepower and speed. The current standardized frames for integral horsepower induction motors ranges from 143T to 445T. These standards cover most motors in the range of one through two hundred horsepower. Typical example of where you can locate the frame is shown in Fig 1.2.D – Frame No. The numbers used to designate frame sizes have specific meanings based on the physical size of the motor. Some digits are related to the motor shaft height and the remaining digit or digits relate to the length of the motor. The rerate, or frame size reduction programs were brought about by advancements in motor technology relating mainly to higher temperature ratings of insulating mate

ELECTRIC MOTOR NAMEPLATE SPECIFICATIONS

How do we interpret an electric motor nameplate? Motor standards are established on a country by country basis.Fortunately though, the standards can be grouped into two major categories: NEMA and IEC (and its derivatives). In North America, the National Electric Manufacturers Association (NEMA) sets motor standards, including what should go on the nameplate (NEMA Standard MG 1-10.40 "Nameplate Marking for Medium Single-Phase and Polyphase Induction Motors").